IonoSciNN

Ionospheric Scintillation Neural Network Prediction System

Carlos Molina, Adriano Camps - UPC/IEEC © 2025

πŸ”§ Configuration Panel

ℹ️ About the Model

Neural network-based prediction of ionospheric scintillation parameters using Rino's theory. Configure geophysical conditions and system parameters below.

πŸ“Š Primary Parameters

🌍 Geophysical Conditions

hours

πŸ—ΊοΈ Visuallization

πŸ“‹ Getting Started

🎯 How to Use IonoSciNN

Configure the parameters in the left panel and click "Generate Scintillation Map" to create global predictions.

πŸ“– Parameter Guide

CkL: Power law index of ionospheric irregularities (log10 scale)
q: Spectral index characterizing electron density fluctuations

πŸ”¬ Scientific Background

IonoSciNN employs neural networks trained on extensive observational datasets to predict ionospheric scintillation input parameters for Rino's weak scintillation theory (CkL, and q).

πŸ“š References

C. Molina, B. E. B. Semlali, H. Park and A. Camps, "A Neural Network Approach to Predict the Ionospheric Scintillation Wbmod Model Variables," IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 7731-7733, doi: 10.1109/IGARSS52108.2023.10282900.

C. Molina and A. Camps, "An Improved Neural-Network to Estimate the Inputs of Rino's Ionospheric Scintillation Model," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, under revision (2025).